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Abstract

Software-based latency tolerance techniques offer the potential for bridging the ever-increasing speed gap
between the memory subsystem and today’s high-performance processors. However, to fully exploit the
benefit of these techniques, one must be careful to apply them only to the dynamic references that are likely
to suffer cache misses—otherwise the runtime overheads can potentially offset any gains. In this paper, we
focus on isolating dynamic miss instances in non-numeric applications, which is a difficult but important
problem. Although compilers cannot statically analyze data locality in non-numeric applications, one viable
approach is to use profiling information to measure the actual miss behavior. Unfortunately, the state-of-the-
art in cache miss profiling (which we call summary profiling) is inadequate for references with intermediate
miss ratios—it either misses opportunities to hide latency, or else inserts overhead that is unnecessary. To
overcome this problem, we propose and evaluate a new profiling technique that helps predict which dynamic
instances of a static memory reference will hit or miss in the cache: correlation profiling.

Our experimental results demonstrate that roughly half of the 22 non-numeric applications we study can
potentially enjoy significant reductions in memory stall time by exploiting at least one of the three forms of
correlation profiling we consider: control-flow correlation, self correlation, and global correlation. In addition,
our detailed case studies illustrate that self correlation succeeds because a given reference’s cache outcomes
often contain repeated patterns, and control-flow correlation succeeds because cache outcomes are often call-
chain dependent. We also demonstrate that software prefetching can achieve better performance on a modern
superscalar processor when directed by correlation profiling rather than summary profiling information.




1 Introduction

As the disparity between processor and memory speeds continues to grow, memory latency is becoming an
increasingly important performance bottleneck. Cache hierarchies are an essential step toward coping with
this problem, but they are not a complete solution. To further tolerate latency, a number of promising
software-based techniques have been proposed. For example, the compiler can tolerate modest latencies by
scheduling non-blocking loads early relative to when their results are consumed [12], and can tolerate larger
latencies by inserting prefetch instructions [7, 9].

While these software-based techniques provide latency-hiding benefits, they also typically incur runtime
overheads. For example, aggressive scheduling of non-blocking loads increases register lifetimes which can
lead to spilling, and software-controlled prefetching requires additional instructions to compute prefetch
addresses and launch the prefetches themselves. While the benefit of a technique typically outweighs its
overhead whenever a miss is tolerated, the overhead hurts performance in cases where the reference would
have enjoyed a cache hit anyway. Therefore to maximize overall performance, we would like to apply a
latency-tolerance technique only to the precise set of dynamic references that would suffer misses. While
previous work has addressed this problem for numeric codes [9], this paper focuses on the more difficult but
important case of isolating dynamic miss instances in non-numeric applications.

1.1 Predicting Data Cache Misses in Non-Numeric Codes

To overcome the compiler’s inability to analyze data locality in non-numeric codes, we can instead make
use of profiling information. One simple type of profiling information is the precise miss ratios of all static
memory references. Throughout the remainder of this paper, we will refer to this approach as summary
profiling, since the miss ratio of each memory reference is summarized as a single value.

If summary profiling indicates that all significant memory reference instructions (i.e. those which are
executed frequently enough to make a non-trivial contribution to execution time) have miss ratios close to
0% or 100%, then isolating dynamic misses is trivial—we simply apply the latency-tolerance technique only
to the static references which always suffer misses. In contrast, if the important references have intermediate
miss ratios (e.g., 50%), then we do not have sufficient information to distinguish which dynamic instances hit
or miss, since this information is lost in the course of summarizing the miss ratio. The current state-of-the-art
approach for dealing with intermediate miss ratios is to treat all static memory references with miss ratios
above or below a certain threshold as though they always miss or always hit, respectively [2]. However, this
all-or-nothing strategy will fail to hide latency when references are predicted to hit but actually miss, and
will induce unnecessary overhead when references are predicted to miss but actually hit. Rather than settling
for this sub-optimal performance, we would prefer to predict dynamic hits and misses more accurately.

1.1.1 Correlation Profiling

By exposing caching behavior directly to the user, informing memory operations [6] enable new classes of
lightweight profiling tools which can collect more sophisticated information than simply the per-reference
miss ratios. For example, cache misses can be correlated with information such as recent control-flow paths,
whether recent memory references hit or missed in the cache, etc., to help predict dynamic cache miss
behavior. We will refer to this approach as correlation profiling.

Figure 1 illustrates how correlation profiling information might be exploited. The load instruction shown
in Figure 1 has an overall miss ratio of 50%. However, depending on the dynamic context of the load, we
may see more predictable behavior. In this example, contexts A and B result in a high likelihood of the
load missing, whereas contexts C and D do not. Hence we would like to apply a latency tolerance technique
within contexts A and B but not C or D.

The dynamic contexts shown in Figure 1 should be viewed simply as non-overlapping sets of dynamic
instances of the load which can be grouped together because they share a common distinguishable pattern. In
this paper, we consider three different types of information which can be used to distinguish these contexts.
The first is control-flow information—i.e. the sequence of N basic block numbers preceding the load. The
other two are based on sequences of cache access outcomes (i.e. hit or miss) for previous memory references:
self correlation considers the cache outcomes of the previous N dynamic instances of the given static reference,
and global correlation refers to the previous N dynamic references across the entire program. Note that
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Figure 1: Example of how correlating cache misses with the dynamic context may improve predictability.
(X/Y means X misses out of Y dynamic references.)

analogous forms of all three types of correlation profiling have been explored previously in the context of
branch prediction [4, 10, 15, 16]

1.2 Objectives and Overview

The goal of this paper is to determine whether correlation profiling can predict data cache misses more
accurately in non-numeric codes than summary profiling, and if so, can we translate this into significant
performance improvements by applying software-based latency tolerance techniques with greater precision.
We focus specifically on predicting load misses in this paper because load latency is fundamentally more
difficult to tolerate (store latency can be hidden through buffering and pipelining). Although we rely on
simulation to capture our profiling information in this study, correlation profiling is a practical technique
since it could be performed with relatively little overhead using informing memory operations [6].

The remainder of this paper is organized as follows. We begin in Section 2 by discussing the three different
types of history information that we use for correlation profiling, and in Section 3 we present a qualitative -
analysis of the expected performance benefits. In Section 4, we present our experimental results which
quantify the performance advantages of correlation profiling in a collection of 22 non-numeric applications.
In addition, in Section 5, we report the memory-access behaviors of individual applications which explain
when and how correlation profiling is effective. In Section 6, we compare the performance of software
prefetching guided by summary and correlation profiling on a modern superscalar processor. Finally, we
discuss related work and present conclusions in Sections 7 and 8.

2 Correlation Profiling Techniques

In this section, we propose and motivate three new correlation profiling techniques for predicting cache
outcomes: control-flow correlation, self correlation, and global correlation.

2.1 Control-Flow Correlation

Our first profiling technique correlates cache outcomes with the recent control-flow paths. To collect this
information, the profiling tool maintains the N most recent basic block numbers in a FIFO buffer, and
matches this pattern against the hit/miss outcomes for a given memory reference. Intuitively, control-flow
correlation is useful for detecting cases where either data reuse or cache displacement are likely.

If we are on a path which leads to data reuse—either temporal or spatial—then the next reference is
likely to be a cache hit. Consider the example shown in Figure 2(a)-(b), where a graph is traversed by the
recursive procedure walk(). Any cyclic paths (e.g., A=»B—C—D—A or P—Q—R—S~P) will result in
temporal reuse of p—data. In this example, control-flow correlation can potentially detect that if the last
four traversal decisions lead to a cycle (e.g., right, down, left, and up), then there is a high probability that
the next p—data reference will enjoy a cache hit.

Some control-flow paths may increase the likelihood of a cache miss by displacing a data line before it is
reused. For example, if the “x > 0” condition is true in Figure 2(c), then the subsequent for loop is likely




struct node {

int data;
struct node *left, *right, *up, *down;

}; X = *p;

void walk(node* p) { if (x > 0) {
vork(p—data) ; for (i = 0;

i < 100000; i++)

if (goleft(p—data)) p = p—rleft;
ali] = foo(i);

elsif (goright(p—data)) p = p—right;

elsif (goup(p—data)) p = p—rup; }
elsif (go.down(p—data)) p = p—down; y = *p;
else p = NULL;
if (p != NULL) walk(p);
} ,
(a) Code with data reuse (b) Example graph  (c) Code with

cache displacement

Figure 2: Examples of how control-flow correlation can detect data reuse and cache displacement. (Control-
flow profiled loads are underlined.)

preorder self cache
traversah  _- g}xt;omes

void preorder(treeNode* p) {
if (p !'= NULL) {

work (p—data) ;

preorder (p—left);

preorder (p—right) ;

}
}
M =miss
15 B
(a) Example Code (b) Tree constructed and traversed both in preorder

Figure 3: Example of using self-correlation profiling to detect spatial locality for p—+data. (Consecutively
numbered nodes are adjacent in memory.)

to displace *p from the primary cache before it can be loaded again. Note that while paths which access
large amounts of data are obvious problems, the displacement might also be due to a mapping conflict.

2.2 Self Correlation

Under self correlation, we profile a load L by correlating its cache outcome with the N previous cache
outcomes of L itself. This approach is particularly useful for detecting forms of spatial locality which are
not apparent at compile time. For example, consider the case in Figure 3 where a tree is constructed in
preorder, assuming that consecutive calls to the memory allocator return contiguous memory locations, and
that a cache line is large enough to hold exactly two treeNodes. Depending on the traversal order (and the
extent to which the tree is modified after it is created), we may experience spatial locality when the tree
is subsequently traversed. For example, if the tree is also traversed in preorder, we will expect p—data to
suffer misses on every-other reference as cache line boundaries are crossed. Therefore despite the fact that
the overall miss ratio of p—data is 50% and the compiler would have difficulty recognizing this as a form of
spatial locality, self correlation profiling would accurately predict the dynamic cache outcomes for p—data.

2.3 Global Correlation

In contrast with self correlation, the idea behind global correlation is to correlate the cache outcome of a load
L with the previous N cache outcomes regardless of their positions within the program. The profiling tool
maintains this pattern using a single N-deep FIFO which is updated whenever dynamic cache accesses occur.
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A->next

while (1) {
register int i = hash(get()); 10 =A@ g::g::

register listNode* curr = htab[il; . b3l

while (curr != NULL) { . G->data
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Figure 4: Example of using global-correlation profiling to detect bursty cache misses for curr—data.

Note that since earlier instances of L itself may appear in this global history pattern, global correlation may
capture some of the same behavior as self correlation (particularly in extremely tight loops).

Intuitively, global correlation is particularly helpful for detecting bursty patterns of misses across multiple
references. One example of this situation is when we move to a new portion of a data structure that has not
been accessed in a long time (and hence has been displaced from the cache), in which case the fact that the
first access to an object suffers a miss is a good indication that associated references to neighboring objects
will also miss. Figure 4 illustrates such a case where a large hash table (too large to fit in the cache) is
organized as an array of linked lists. In this case, we might expect a strong correlation between whether
htab[i] (the list head pointer) misses and whether subsequent accesses to curr—data (the list elements)
also miss. Similarly, if the same entry is accessed twice within a short interval (e.g., htab[10]), the fact that
the head pointer hits is a strong indicator that the list elements (e.g., A—data and B—data) will also hit.

In summary, by correlating cache outcomes with the context in which the reference occurs—e.g., the
surrounding control flow or the cache outcomes of prior references—we can potentially predict the dynamic
caching behavior more accurately than what is possible with summarized miss ratios.

3 Qualitative Analysis of Expected Benefits

Before presenting our quantitative results in later sections, we begin in this section by providing some
intuition on how correlation profiling can improve performance. A key factor which dictates the potential
performance gain is the ratio of the latency tolerance overhead (V) to the cache miss latency (L). In the
extreme cases where % =0or r = 1, there is no point in applymg the latency tolerance technique (7)

selectively, since it either has no cost or no benefit. When 0 < L < 1, however, applying T selectively may
be important.

Figure 5(a) illustrates how the average number of effective stall cycles per load (C'P L) varies as a function
of ¥ for various strategies for applying 7. (Note that our CPL metric includes any overhead associated
with applying 7", but does not include the single cycle for executing the load instruction itself.) If T is never
applied, then the CPL is simply mL, where m is the average miss ratio. At the other extreme, if we always
apply T, then the latency will always be hidden, but all references (even those that normally hit) will suffer
the overhead V: hence the CPL = V. Note that when ¥ 1 > m, it is better to never apply T rather than
always applying it. Figure 5(b) shows an alternative view of CPL, where it is plotted as a function of m for
a fixed + V Again we observe that the choice of whether to always or never apply T depends on the value of
m relatlve to L

To achieve better performance than this all-or-nothlng approach, we apply the same decision- makmg
process (i.e. comparing the miss ratio with L) to more refined sets of loads. In the ideal case, we would
consider and optimize each dynamic reference individually (the resulting CPL of mV is shown in Figure 5).
However, since this is impractical for software-based techniques, we must consider aggregate collections of
references. Since summary profiling provides only a single miss ratio per static reference, the finest granularity
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Figure 5: Illustration of the CPL for different approaches of applying a latency tolerance scheme (m =
overall average load miss ratio, V = latency tolerance overhead, and L = load miss latency).

at which we can decide whether or not to apply T is once for all dynamic instances of a given static reference.
Figure 5 illustrates the potential shape of this “single action per load’ curve, which is bounded by the cases
where T is never, always, and ideally applied. Since correlation profiling distinguishes different sets of
dynamic instances of a static load based on path information, it allows us to make decisions at a finer
granularity than with summary profiling. Therefore we can potentially achieve even better performance, as
illustrated by the “multiple actions per load” curve in Figure 5. (Further details on the actual CPL equations
for the summary and correlation profiling cases can be found in the Appendix)

4 Quantitative Evaluation of Performance Gains

In this section, we present experimental results to quantify the performance benefits offered by correlation
profiling. We begin by measuring and understanding the potential performance advantages for a generic
latency tolerance scheme. Later, in Section 6, we will focus on software-controlled prefetching as a specific

case study.

4.1 Experimental Methodology

We measured the impact of correlation profiling on the following 22 non-numeric applications: the entire
SPEC95 integer benchmark suite, the additional integer benchmarks contained in the SPEC92 suite, unipro-
cessor versions of two graphics applications from SPLASH-2 [14], eight applications from Olden [11] (a suite
of pointer-intensive benchmarks), and the standard UNIX utility awk. Table 1 briefly summarizes these
applications, including the input data sets that were run to completion in each case, and Table 2 shows some
relevant dynamic statistics of these applications.

We compiled each application with -02 optimization using the standard MIPS C compilers under
IRIX 5.3. We used the MIPS pixie utility [13] to instrument these binaries, and piped the resulting
trace into our detailed performance simulator. To increase simulation speed and to simplify our analysis,
we model a perfectly-pipelined single-issue processor (similar to the MIPS R2000) in this section. (Later, in
Section 6, we model a modern superscalar processor: the MIPS R10000).

To reduce the simulation time, our simulator performs correlation profiling only on a selected subset of
load instructions. Our criteria for profiling a load is that it must rank among the top 15 loads in terms
of total cache miss count, and its miss ratio must be between 10% and 90%. Using this criteria, we focus
only on the most significant loads which have intermediate miss ratios. We will refer to these loads as the
correlation-profiled loads. The fraction of dynamic load references in each application that is correlation
profiled is shown in Table 2. '




Table 1: Benchmark characteristics.

[ Suite | Name | Description | Input Data Set | Cache Size
SPEC95 m88ksim Motorola 88000 CPU simulator train 8 KB
Integer perl Unix script language Perl train (scrabbl) 128 KB

g0 Computer game “Go” train 8 KB
jpeg Graphic compression and decompression train 8 KB
vortex Database program train 8 KB
compress Compresses and decompresses fiie 1n memory train 16 KB
gce GNU C compiler train (amptjp.1) 64 KB
1 LISP interpreter train 8 KB
SPEC92 sC Spreadsheet program loadal 128 KB
Integer espresso Minimization of boolean functions cps 16 KB
eqntott Translation of boolean equations into truth tables int.-pri-3.eqn 8KB
SPLASH-2 | raytrace Ray-tracing program car | 4KB
radiosity Light distribution using radiosity method batch ] 8KB
Olden bh Barnes-Hut’s N-body force-calculation 4K bodies 16KB
mst Finds the minimum spanning tree of 2 graph 512 nodes 8KkB
perimeter | Computes perimeters of regions in images 4K x 4K mmage 16KB
health Simulation of the Columbian health care system max. level = 5 16KB
max. time = 50
tsp Traveling salesman problem 100,000 cities 8KB
bisort Sorts and merges bitonic sequences 250,000 integers 8KB
em3d Simulates the propagation of E.M. waves in 2 3D object 2000 H-nodes, 32KB
100 E-nodes
VOoronot Computes the voronoi diagram of a set of points 20,000 points S8KB
UNIX awk Unix script language AWK Extensive test of 32KB l
Utilities AWK'’s capabilities

We attempt to maintain as much history information as possible for the sake of correlation. For control-
flow correlation, we typically maintained a path length of 200 basic blocks—in some cases this resulted in
such a large number of distinct paths that we were forced to measure only 50 basic blocks. For the self and
global correlation experiments, we maintained a path length of 32 previous cache outcomes (either self or
global).

We focus on the predictability of a single level of data cache (two levels makes the analysis too compli-
cated). The choice of data cache size is important because if it is either too large or too small relative to the
problem size, predicting dynamic misses becomes too easy (they either always hit or always miss). Therefore
we would like to operate near the “knee” of the miss ratio curve, where predicting dynamic hits and misses
presents the greatest challenge. Although we could potentially reach this knee by altering the problem size,
we had greater flexibility in adjusting the cache size within a reasonable range. We chose the data cache size
as follows. We first used summary profiling to collect the miss ratios of all loads within the application on
different cache sizes ranging from 4KB to 128KB. We then chose the cache size which resulted in the largest
number of significant loads having intermediate miss ratios—these sizes are shown in Table 1. In all cases,
we model a two-way set-associative cache with 32 byte lines.

4.2 Improvements in Prediction Accuracy and Performance

Figure 6 shows how the three correlation profiling schemes—control-flow (C), self (S), and global (G)—
improve the prediction accuracy of correlation-profiled loads. Each bar is normalized with respect to the
number of mispredicted references in summary profiling (P), and is broken down into two categories. The
top section (“Predict HIT / Actual MISS”) represents a lost opportunity where we predict that a reference
hits (and thus do not attempt to tolerate its latency), but it actually misses. The “Predict MISS / Actual
HIT” section accounts for wasted overhead where we apply latency tolerance to a reference that actually
hits.

As discussed earlier in Section 3, our threshold for deciding whether to apply latency tolerance to a
reference is that its miss ratio must exceed %, where V is the latency tolerance overhead and L is the miss
latency. For summary profiling, this threshold is applied to the overall miss ratio of an instruction; for
correlation profiling, it is applied to groups of dynamic references along individual paths. Figure 6 shows
results with two values of ¥: 0.25 and 0.5. For {- = 0.25, summary profiling tends to apply latency tolerance
aggressively, thus resulting in a noticeable amount of wasted overhead. In contrast, for % = 0.50, summary
profiling tends to be more conservative, thus resulting in many untolerated misses. Overall, correlation



Table 2: Dynamic benchmark statistics (the column “Insts” is the number of dynamic instructions, the
column “Loads” is the number of dynamic loads (its percentage out of “Insts” is also given), the column
“Load Miss Rate” is the data-cache miss rate of loads, the column “CP Loads” is the fraction of dynamic
loads that are correlation profiled, and the column “CP Load Misses” is the fraction of load misses that are

correlation profiled).

Suite Name ] Dynamic Statistics ]
| I [ Insts | Loads Load Miss Rate | CP Load Refs | CP Load Misses |
[TSPEC95 m88ksim 132M | 22M (17%) 0.8% 1% 48%

Integer perl 79M T5M (18%) 12.3% 21% 5%

g0 56%‘1\7["72‘1’1%&@;) 71% 10% 23%
ijpeg 1438M | 266M (18%) 2.7% 2% 17%
vortex 2838M | 830M (25%) 3.3% 7% 48%
compress 35M M (20%) 3.9% €% 7%
gee 8IM | 6IM (22% T4% % 40%
T 228M | 5aM (24% 4.0% 3% 3%

SPEC92 sc 833M | 143M (17%) 9.2% 26% 92% |

Integer espresso 560M | 112M (20%) 2.2% % 70%

eqntott 986M | 210M (21%) | 5.5% 14% 7%

SPLASH-2 raytrace | 2105M | 588M (28%) | 4.8% 10% 53% ‘

radiosity 996M | 236M (24%) | 0.4% 1% 32%

Olden bh 2326M | 667M (29%) | 1.0% 3% 82%
mst 90M 14M (16%) 6.9% 17% 91%

perimeter | 128M | 17M (14%) 2.3% 5% 88%

health M M (25%) 9.0% 20% 84%

tsp S25M | 239M (23%) 1.0% 1% 37%

bisort 732M | 132M (18%) 2.5% 6% 74%

emad 420M | 73M (17%) 1.4% 4% 98%

voronoi 263M | 87M (16%) 1.3% % 57%

{TUNIX Utilities | awk 70M M (7%) 7.6% 16% 90%

profiling can significantly reduce both types of misprediction.

To quantify the performance impact of this increased prediction accuracy, Figure 7 shows the resulting
execution time of the four profiling schemes, assuming a cache miss latency of 50 cycles. Each bar is
normalized to the execution time without latency tolerance, and is broken down into four categories. The
bottom section is the busy time. The section above it (“Predict MISS / Actual MISS”) is the useful overhead
paid for tolerating references that normally miss. The top two sections represent the misprediction penalty,
including wasted overhead (“Predict MISS / Actual HIT’) and untolerated miss latency (“Predict HIT /
Actual MISS”).

The degree to which improved prediction accuracy translates into reduced execution time! depends not
only on the relative importance of load stalls but also the fraction of loads that are correlation profiled. When
both factors are favorable (e.g., eqntott), we see large performance improvements—when either factor is
small (e.g., perimeter and tsp), the performance gains are modest despite large improvements in prediction

accuracies.

5 Case Studies

To develop a deeper understanding of when and why correlation profiling succeeds, we now examine a
number of the applications in greater detail. In addition to discussing the memory access patterns for these
applications, we also show the impact of the correlation-profiled loads on three performance metrics: the
miss ratio distribution, the stall cycles per load (CPL) due to correlation-profiled loads only, and the overall
CPI. While CPL and CPI measure the impacts on execution time, the miss ratio distribution gives us
insight into how effectively correlation profiling has isolated the dynamic hit and miss instances of static
load instructions.

1Since failing to hide a miss is more expensive than wasting overhead, it is possible to improve performance by replacing more
expensive with less expensive mispredictions, even if the total misprediction count increases (e.g., raytrace with control-flow
g y

correlation when % = 0.25)
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Figure 6: Number of mispredicted correlation-profiled loads, normalized to summary profiling (P = sum-
mary profiling, C = control-flow correlation, S = self correlation, G = global correlation). Maximum path
lengths used in control-flow correlation are indicated next to the benchmark names.

5.1 L

Over half of the total load misses are caused by two pointer dereferences: this—n._flags in mark(), and
p—n_flags in sweep(), as illustrated by the pseudo-code in Figure 8.

The access patterns behave as follows. The procedure mark() traverses a binary tree through the three
while loops shown in Figure 8(a). Starting at a particular node, the first inner while loop continues
descending the tree—choosing either the left or right child as it goes—until it reaches either a marked node
or a leaf node. At this point, we then backup to a node where we can continue descending through a search
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Figure 7: Impact of the profiling schemes on execution time, assuming a 50 cycle miss latency (L). (P =
summary profiling, C = control-flow correlation, S = self correlation, and G = global correlation.)

performed by the second inner while loop. The tree is allocated in preorder, similar to the one shown
in Figure 3, except much larger. Therefore we enjoy spatial locality as long as we continue following left
branches in the tree, but spatial locality is disrupted whenever we backup in the second inner while loop,
as illustrated by Figure 8(c).

All three types of correlation profiling provide better cache outcome predictions than summary profiling
for the this—n_flags reference in mark() for 1i. Self correlation detects this form of spatial locality
effectively. Global correlation is more accurate than summary profiling but less accurate than self correlation
in this case because the cache outcomes of other references (which do not help to predict this reference)
consume wasted space in the global history pattern. Control-flow correlation also performs well because it




LOCAL sweep(){

void mark (NODE #*ptr) { oo
for (seg = segs; seg != NULL;

while (TRUE) { /* outer while loop */ seg = seg—rsgmext) {
while (TRUE) {/* 1st inner while loop */ P = &seg—rsgmodes[0];
if (this—n.flags & MARK) _ for (n = seg—rsg-size; n-—; pt+)
break; /* a marked node */ if (!(p—nflags & MARK)) {
else {
cees }
if (livecar(this)) { }
}
prev = this;
this = car(prev); /* go left */ (b) Procedure sweep()

} else if (livecdr(this)) {
prev = this;
this = cdr(prev); /* go right */

cees
}else break; /* a leaf node* /
} /* ends if-else */
} /* ends 1st inner-while */
vhile (TRUE) {/* 2nd inner while loop */
/* backup to a point where we
can continue descending */
} /% ends 2nd inner while */
} /% end ist outer while */

(a) Procedure mark() . .
(c) Tree traversal order in mark()

Figure 8: Procedures mark() and sweep() in 1i, and the memory access patterns of mark(). (Note:
consecutively numbered nodes in part (c) correspond to adjacent addresses in memory.)

observes that this—n_flags is more likely to suffer a miss if we begin iterating in the first inner while loop
immediately following a backup performed in the second inner while loop (in the preceding outer while
loop iteration).

Finally, the reference p—n_flags in sweep() (shown in Figure 8(b)) is in fact an array reference written
in pointer form. Both self correlation and global correlation detect the spatial locality caused by accessing
consecutive elements within the array. (Although the compiler could potentially recognize this spatial locality
through static analysis if it can recognize that p—n_flags is effectively an array reference, this is not always
possible for all such cases.)

Figure 9 shows the detailed performance results for 1i. The miss ratio distribution in Figure 9(a) has
ten ranges of miss ratios, each of which contains four bars corresponding to the fraction of total dynamic
correlation-profiled load references that fall within this range. The bars for summary profiling represent
the inherent miss ratios of these load instructions, and the other three cases represent the degree to which
correlation profiling can effectively group together dynamic instances of the loads into separate paths with
similar cache outcome behavior. For a correlation scheme to be effective, we would like to see a “U-shaped”
distribution where references have been isolated such that they always have very high or very low miss
ratios—we refer to such a case as being strongly biased. In contrast, if most of the references are clustered
around the middle of the distribution, we say that this is weakly biased. Correlation profiling can outperform
summary profiling by increasing the degree of bias, which we do observe in Figure 9(a). With summary
profiling, 80% of the loads that we profile? have miss ratios in the range of 30-50% (these include the
this—n flags and p—n_flags references shown earlier in Figure 8). In contrast, with self correlation

2Recall that we only profile loads with miss ratios between 10% and 90% among the top 15 ranked loads in terms of their
contributions to total misses. Therefore the summary profiling case will never have loads outside of this miss ratio range.
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Figure 9: Detailed performance results for 1i.

profiling only 27% of the isolated loads have miss ratios in the 30-50% range, and over 45% are either below
10% or above 90%. All three correlation schemes increase the degree of bias in this case.

This increased degree of bias of correlation-profiled loads translates into a reduction in CPL, as shown in
Figure 9(b) where the CPL due to correlation-profiled loads is plotted over a range of overhead-to-latency
ratios (%), assuming a miss latency of 50 cycles. As we have discussed in Section 3, correlation profiling
partially closes the gap between summary profiling and ideal prediction. The overall CPI is also shown in

Figure 9(c).

5.1.1 eqntott

Figure 10 shows detailed performance results for eqntott, where we see that all three forms of correlation
profiling successfully increase the degree of bias and reduce CPL (and hence CPI). We now focus on
the memory access behavior. Most of the load misses are caused by the four loads in cmppt() shown in
Figure 11(a), two of which are array references (a_ptand[i] and b.ptand[i]). Clearly the spatial locality
enjoyed by these two array references can be detected through self correlation (and hence global correlation).
However, the access patterns of the other two loads (a[0] —+ptand and b[0]—ptand) are more complicated.
The procedure cmppt() has multiple call sites, and two of them, say S1 and S, invoke it very frequently.
Whenever cmppt() is called at S;, a[0] will very likely be unchanged but b[0] will have a new value. In
contrast, whenever cmppt() is called at S;, b[0] will very likely be unchanged but a[0] will have a new
value. Moreover, both S; an S» repeatedly call emppt(). This call-site dependent behavior results in the
streams of cache outcomes illustrated in Figure 11(b). Self correlation captures these streaming behavior,
and control-flow correlation also predicts the cache outcomes accurately by distinguishing the two call sites
of cmppt (). ‘

The cache outcomes of a[0] —ptand also help predict those of a_ptand[i]—if a[0] —+ptand is a hit, it
implies that the array a_ptand[] has been loaded recently, and therefore the a_ptand[i] references are likely
to also hit. (Similar correlation also exists between b[0]—ptand and b_ptand[il). Hence global correlation
is quite effective in this case. Control-flow correlation also predicts the cache outcomes of a_ptand[i] and

11
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Figure 10: Detailed performance results for eqntott.

extern int ninputs, noutputs; a[°]->p1:m%l calls bf””””"d
int cmppt (a, b) H M
PTERM *a[l, *b[1; { H M
register int i, aa, bb; g Rdd
register int* a_ptand, *b_ptand; H M
aptand = al0]—ptand; ‘/Sz/calls\‘
b_ptand = b[0]—ptand; ﬁ g
for (i = 0; i < ninputs; i++) { M H
aa = a.ptand[il; M g

bb = b_ptand[il; )aus\_

/* the famous correlated branches */ H M
} [M = miss g %
return (0); .:’H = hit H M
} H M
(a) Procedure cmppt() which causes (b) Call-site dependent
most load misses cache outcome patterns

Figure 11: The memory access behavior in eqntott. To make all loads explicit, we rewrite the two expres-
sions a[0]—ptand[i] and b[0]—ptand[i] in the original cmppt () into the four loads (i.e. a[0]—ptand,
a_ptand[i], b[0]—>ptand, and b_ptand[il) shown in (a).

b_ptand[i] in an indirect fashion, by virtue of predicting those of a[0]—ptand and b[0]—yptand.
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Figure 12: Detailed performance results for perimeter.
% (@) void middle first (quadTree* p) {
if (p == NULL)
return;

work (p—data) ; .

™ More spatial Iocality middlefirst (p—middleleft);

found at the bottom middle first (p—middleright);
middle first (p—left);

middle first (p—right);

(2) A quadtree allocated in preorder - (b) Code for traversing the quadtree in (a)

Figure 13: Example of a case where more spatial locality is found at the bottom of a tree. This example
. assumes that one cache line can hold three tree nodes and the tree is allocated in preorder. Nodes having
consecutive numbers are adjacent in the memory.

5.1.2 perimeter and bisort

Figure 12 shows the detailed performance results for perimeter. The main data structures used in both
perimeter and bisort are trees: quadtrees in perimeter, and binary trees in bisort. These trees are
allocated in preorder, but the orders in which they are traversed are rather arbitrary. As a result, we do
not see very regular cache outcome patterns (such as the one illustrated in Figure 3) for these applications.
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‘Figure 14: Detailed performance results for mst.

Nevertheless, there is still a considerable amount of spatial locality among consecutively accessed nodes while
we are traversing around the bottom of a tree that has been allocated in preorder. For example, if we traverse
a quadtree using the procedure middle first () shown in Figure 13, we will only miss twice upon accessing
nodes 156 through 160 at the tree’s bottom, assuming that nodes 156 through 158 are in one cache line
and nodes 159 through 161 are in another. In contrast, there is relatively little spatial locality while we are
traversing the middle of the tree. Self correlation (and hence global correlation) can discover whether we
are currently in a region of the tree that enjoys spatial locality. Control-flow correlation can also potentially
detect whether we are close to the bottom of the tree by noticing the number of levels of recursive descent.

5.1.3 mst

Most of the misses in mst (see the detailed performance results in Figure 14) are caused by loads in
HashLookup() and the tmp—edgehash load in BlueRule(), as illustrated in Figure 15. The mst application
consists of two phases: a creation phase and a computation phase. Both phases invoke HashLookup(), but
the creation phase causes most of the misses when it calls HashLookup() to check whether a key already
exists in the hash table before allocating a new entry for it. During the computation phase, much of the data
has already been brought into the cache, and hence there are relatively few misses. Both self correlation and
global correlation accurately predict the cache outcomes of these two distinct phases, since they appear as
repeated streams of either hits or misses. Control-flow correlation is also effective since it can distinguish
the call chains which invoke HashLookup().

The load of tmp—edgehash in BlueRule() accesses a linked lists whose nodes are in fact allocated at
contiguous memory locations. Consequently, self correlation detects this spatial locality accurately, but
control-flow correlation is not helpful.
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void *HashLookup(int key, Hash hash) { static BlueReturn BlueRule(...) {

int j; ve
HashEntry ent; for (tmp=vlist—next; tmp;
j = (hash—mapfunc) (key); prev=tmp,tmp=tmp—next) {
for (ent = hash—array[jl; .
ent &% ent—key !=key; hash = tmp—edgehash;
ent = ent—next);
if (ent) return ent—entry; }
return NULL; }
}
Figure 15: Pseudo codes drawn from mst.
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Figure 16: Detailed performance results for raytrace.

5.1.4 raytrace and tsp

In raytrace (refer to Figure 16 for its performance results), over 30% of load misses are caused by the
pointer dereference of tmp—bv in prims_in box2() (see Figure 17). In subdiv.bintree(), the two calls to
prims_in_box2() copy part of the array pe of the current node btn to the arrays btni—pe and btn2—ipe,
where btnil and btn2 are the children of btn. This process of copying pe is performed recursively on the
whole tree by create bintree(). As a result, when prims_in_box2() is called upon a node 7, we may have
used all values in the array pe (referred to as pepa in prims_in box2()) of n before at some antecedent of
n and hence hopefully most data loaded by tmp-+bv is already in the cache. In this case, most references
of tmp—bv will hit in the cache. In contrast, if the values in pepa are new, all tmp—bv references will
miss. Hence self correlation captures these streams of hits and streams of misses. In theory, control-flow
correlation could also achieve good predictions by observing whether any copying occurred in the parent
node—unfortunately, the profiling tool cannot record enough state across the many control-flow changes in
subdiv_bintree() and prims_in_box2() to know what decisions were made in the parent node.
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ELEMENT **prims_in_box2(pepa, ...){ VOID subdiv.bintree(BTNODE* btn, ...){

ELEMENT **pepa; ‘o
/* btnl and btn2 are btn’s children */

k = 0; btnil—pe = prims_inbox2(btn—pe, ...);
npepa = alloc(...);
for (j = 0; j < n.in; j++){ btn2—ype = prims_in box2(btn—pe, ...);
tmp = pepaljl; ..
bb = tmp—bv; }
. es VOID createbintree(BTNODE* root, ...){
/* computes ovlap */ .
/* no change in pepalj] */ if (...) {
if (ovlap == 1) { subdivbintree(root, ...);
npepalk++] = pepaljl; create bintree(root—btn[0], ...);
.. createbintree(root—btn[1l, ...);
}
} }
return (npepa); vee
} }

Figure 17: Pseudo codes drawn from raytrace.

. ti
Tree tsp(Tree t,int sz, ...) { static Tree conquer(Tree t) {

if (t-»size <= sz) return conquer(t); ;O: n(l?ki?lf:;:;e;xt) {
leftval = tsp(t—left, sz, ...); :2::;%‘__‘_)‘(1—;%;;&.
rightval = tsp(t—right,sz, ...); } i
return merge(leftval, rightval, t, ...);

} }

Figure 18: Pseudo codes drawn from tsp. Procedure makelist(Tree t) slings t into a list consisting of
all nodes of t.

Similar to raytrace, tsp also traverses a binary tree recursively, and some data which is read by the cur-
rent node will be read again by its descendents. As illustrated in Figure 18, the procedure tsp() recursively
traverses the tree t and calls conquer(t) if the size of t is not greater than sz. The procedure conquer(t)
uses makelist(t) to sling every node of t into a list which is then traversed by the for loop. Therefore
since all descendents of t are brought into the cache whenever conquer(t) is called, subsequent recursion
down t—left and t—right within tsp() results in many cache hits. Hence the 1—data references either
mainly hit or mainly miss for a given node t. Self correlation captures this pattern effectively. Control-flow
correlation is also quite effective because it can observe the number of times conquer() has been called in
a given recursive descent—most misses occur the first time it is invoked.

5.1.5 voronoi and compress

Control-flow correlation offers the best prediction accuracy in both of these applications. Most of the
misses in voronoi are caused by loading b—ynext in splice(), which is called from three different places in
do_merge(), as illustrated in Figure 20(a). When splice() is called from call site 1, b—next will hit since
1di—next loaded this same data into the cache just prior to the call. When splice() is called from the
other two call sites, b—next is more likely to miss. Hence control-flow correlation distinguishes the behavior
of these different call sites accurately. Self correlation is less effective since b—next does not have regular

cache outcome patterns.
In compress (see Figure 19 for its performance results), roughly half of the misses are caused by the hash
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Figure 19: Detailed performance results for compress.

table access htabof[i] in the procedure compress() (see Figure 20(b)). The index i to the hash table htab
is a function of the combination of the prefix code ent and the new character c. If this combination has
been seen before, the hash probe test ((htab[il == fcode)) will be true—if it has been seen recently, the
load of htab[i] is likely to hit in the cache. Since the input file we use (provided by SPEC) is generated
from a frequency distribution of common English texts, some strings will appear more often than others.
Because of this, we expect that the condition (htab[i] == fcode) should be true quite frequently once
many common strings have been entered into htab. If the last few tests of (htab[i] == £ code) are false,
the probability that the next one is true will be high, which also implies that the next reference of htab [i]
is more likely a hit. Therefore, control-flow correlation can make accurate predictions by examining the last
several outcomes of this branch.

5.1.6 espresso, vortex, m88ksim, and go

For these four applications, correlation profiling mainly improves the cache outcome predictions for array
references. In espresso (see Figure 21 for its detailed performance results), many load misses are due to
array references, written in pointer form, with variable strides. Figure 22(a) shows one such example. Inside
the for loop, p is incremented by BB—wsize, whose value depends on the call chain of setup.BB_CC() and
ranges from 4 to 24 bytes. Different values result in different degrees of spatial locality, but all can be
captured by self correlation (and hence global correlation). Control-flow correlation can also make enhanced
predictions by exploiting the call-chain information.

In vortex, m88ksim, and go, many load misses are caused by array references located inside procedures,
where array indices are passed as procedure parameters. See Figure 22(b) for an example drawn from
vortex. Each of these procedures have multiple call sites, and the cache outcomes of those array references
are mainly call-site dependent. This explains why control-flow correlation offers the highest cache outcome
prediction accuracy for these three benchmarks. In vortex, the array index parameter values at a given
call are very close or even identical most of the time, but values passed at different call sites are quite
different. Consequently, references made through the same call sites will enjoy temporal and/or spatial
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EDGE_PAIR domerge(...) {

v = ldi—next;
b = 1di;
splice(a, b) /* call site 1%/

/* no dereferences of 1dj before */
b = 1dj;
splice(a, b) /# call site 2%/

/% no dereferences of 1dk before */

compress() {
while ((c = getbyte()) != EOF) {

fcode = (((long) c << maxbits) + ent);
i = (xor({c << hshift), ent));
if (htab[i] == fcode) {

ent = codetab{i];

continue;
b = 1dk; ., } else {
splice(a, b) /* call site 3%/ 7+ store fcode into htab %/ .
splice (QUAD.EDGE a, QUADEDGE b) { }

beta = rot (b—next);

(a) Code fragment in voronoi (b) Code fragment in compress

Figure 20: Pseudo codes drawn from (a) voronoi and (b) compress.

locality, but those made through different call sites will not. Since a procedure is usually invoked multiple
times by the same call site before being invoked by another call site, this results in a streaming pattern of a
miss followed by several hits—hence self correlation also performs well in vortex by capturing these cache

outcome patterns.

5.2 Lessons Learned from All Case Studies

Although global correlation makes excellent predictions in some cases by correlating behavior across different
load instructions (e.g., eqntott), in most cases it essentially assimilates self correlation, but does not perform
quite as well since it records less history for a given load. Self correlation is often successful since it recognizes
forms of spatial locality which are not recognizable at compile time (e.g, 1i, perimeter, bisort, and mst),
and also long runs of either all hits or all misses (e.g., eqntott, mst, tsp, and raytrace). We often find that
as few as four previous cache outcomes per reference are sufficient to achieve good predictability with self
correlation. By capturing call chain information, control-flow correlation can distinguish behavior based on
call sites (e.g., eqntott, espresso, vortex, m88ksim, go, mst and voronoi) and the depth of the recursion
while traversing a tree (e.g., perimeter, bisort, and tsp).

Roughly half of the applications enjoy significant improvements from both control-flow and self correlation,
and in many of these cases we observe that the same load references can be successfully predicted by both
forms of correlation. This is good news, since control-flow correlation profiling is the easiest case to exploit
in practice by using procedure cloning [5) to distinguish call-chain dependent behavior.

6 Applying Correlation Profiling to Prefetching

To demonstrate the practicality of correlation profiling, we used both summary and correlation profiling to
guide the manual insertion of prefetch instructions into three applications: (egntott, tsp, and raytrace).
In the case of correlation profiling, we used procedure cloning [5) to isolate different dynamic instances of a
static reference, and adapted the prefetching strategy accordingly with respect to the call sites. We assumed
that %— = 0.1 when deciding whether to insert prefetches,® and we performed fully-detailed simulations of a
processor similar to the MIPS R10000 [8] (details of the memory hierarchy are shown in Figure 23(a)).

3We assume an average prefetch overhead (V) of two cycles, and an average miss latency (L) of 20 cycles.
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Figure 21: Detailed performance results for espresso.

void setup.BB_CC(pcover BB,

peover CO){ boolean ChkGetChunk (numtype ChunkNum, ...) {
for (p=BB—data, e
last=p+BB—count*BB—usize; i (S"(:heory—)—_—_l’lags [ChunkNun] & ...))
p<last;p+=BB—usize) e
plo] = pf0] | ACTIVE; } Tt
}
(2) Code fragment in espresso (b) Code fragment in vortex

Figure 22: Pseudo codes drawn from (a) espresso and (b) vortex.

Figure 23(b) shows the resulting execution times, normalized to the case without prefetching. For these
applications, summary-profiling directed prefetching actually hurts performance due to the overheads of
unnecessary prefetches. In contrast, correlation profiling provides measurable performance improvements by
isolating dynamic hits and misses more effectively, thereby achieving similar benefits with significantly less
overhead. We would also like to point that these numbers do not represent the limit of what correlation
can achieve. For example, with an 8KB primary data cache, correlation profiling offers a 10% speedup over
summary profiling in the case of eqntott.

7 Related Work

Abraham et al. [2] investigated using summary profiling to associate a single latency tolerance strategy (i.e.
either attempt to tolerate the latency or not) with each profiled load. They used this approach to reduce
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Figure 23: Impact of correlation profiling on prefetching performance (N = no prefetching, S = prefetching
directed by summary profiling, C = prefetching directed by correlation profiling).

the cache miss ratios of nine SPEC89 benchmarks, including both integer and floating-point programs. In
a follow-up study [1], they also report the improvement in effective cache miss ratio. In contrast with this
earlier work, our study has focused on correlation profiling, which is a novel technique that provides superior
prediction accuracy relative to summary profiling.

Ammons et al.[3] used path profiling techniques to observe that a large fraction of primary data cache
misses in the SPEC95 benchmarks occur along a relatively small number of frequently executed paths.

The three forms of correlation explored in this study (control-flow, self, and global) were inspired by earlier
work on using correlation to enhance branch prediction accuracies [4, 10, 15, 16]. While branch outcomes
and cache access outcomes are quite different, it is interesting to observe that correlation-based prediction

works well in both cases.

8 Conclusions

To achieve the full potential of software-based latency tolerance techniques, we have proposed correlation
profiling, which is a technique for isolating which dynamic instances of a static memory reference are likely to
suffer cache misses. We have evaluated the potential performance benefits of three different forms of correla-
tion profiling on a wide variety of non-numeric applications. Our experiments demonstrate that correlation
profiling techniques always outperform summary profiling by increasing the degree of bias in the miss ratio
distribution, and this improved prediction accuracy can translate into significant reductions in the memory
stall time for roughly half of the applications we study. Detailed case studies of individual applications show
that self correlation works well because the cache outcome patterns of individual references often repeat in
predictable ways, and that control-flow correlation works mainly because many cache outcomes are call-chain
dependent. Although global correlation offers superior performance in some cases, for the most part it mainly
assimilates self correlation. Finally, we observe that correlation profiling offers superior performance over
summary profiling when prefetching on a superscalar processor. We believe that these promising results may
lead to further innovations in optimizing the memory performance of non-numeric applications.

Appendix: Derivation of the Stall Cycles Per Load (CPL) under
Five Latency-Tolerance Schemes

Denote the CPL under a particular tolerance scheme S by CPLs. Let CPLis be the CPLg of load i in the
program and f; be the fraction of references made by load i out of the total references of all loads. Then:

CPLs = Z CPLL x fi (1)
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Let L be the cycles stalled upon a load miss, V be the overhead of applying the latency-tolerance technique
T to a load reference, m; is miss ratio of load ¢ and m is the overall miss ratio of all loads.

CPLpeyer = mL (2)

CPLaways: T fully tolerates the latencies of all load references but always incurs the overhead, so:

|
|
CPLneyer: A load reference is stalled only when it is a cache miss, so:
|
i CPLalways =V (3)

CPLgingie.action _per Joad: The miss ratio m; decides whether T' should be applied to load i:

; m;L if m; <Y (i.e. not apply T
CPL:ingle_action_per_load = { Vz othezrv-;isé ((1e applylr)ll:\))y ) (4)

= i 3 2 ' i .
CPLsingle_action_perJoad = ZCPLsingle_action_perJoad X fi + CPLsingle.action_perJoad X fi

i€A iENA
= VY fi+L Y mifi by(4) (5)
i€A iENA

where A is the set of loads with miss ratios > ¥ and N A is the set of loads with miss ratios < ¥.
L 2

CPLmultiple actions per doad: T is only applied to references of load i that belong to contexts with miss

ratios > ¥ V . The formula for CPLmu,t,p,e_act, ons_per_load CaR be simply obtained adding an extra level
to Equatmn (5) to capture the notion of contexts within load i. That is:

CPL;nultiple_action.s.per..load =V E fij+L Z m; ; fi j (6)
JEA; JENA; :

where A; is the set of contexts of load ¢ with miss ratios > L, NA; is the set of contexts of load
i of miss ratios < ¥ I, m; j is the miss ratio of context j of load ¢, and f;; is the fraction of refer-
ences of load 7 that are on context j. CPLnuitipie_actions._per Joad can be obtained by substituting

CPLmultzple_actwns.per_load into Equatlon (1)

CPL;jea: Under this ideal scheme, load-miss latencies are fully tolerated and the overhead is only incurred
to miss references:

CPLigeat = mV (7)
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